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LETTER TO THE EDITOR 

The triangular-lattice Hubbard model: a frustrated highly 
correlated electron system 

C J Gazza, A E Trumper, and H A Ceccatto 
htituto de Fkica Rosario. Univezsidad Nacional de Rosario, Bvd. 21 de Febrero 210 Bis, 2000 
Rosario, Argentina 

Received 8 July 1994 

Abstract. We have studied the ground-state properties of the half-filled Hubbard model on 
the triangular lattice by means of the slave-boson technique. The combined effects of high 
comlarion and frustration in this non-bipartite lattice produce a rich phase diagnun. including 
Paramagnetic, commensurate spiral, and linear spin-density-wave phases, as well as a metal- 
insulator vansition. Unlie previous Hiuvee-Fock studies of this model, the slave-boson 
technique predicts no metallic incommensurate spiral state to be the stable ground state in 
any region of parameter space. 

In recent years there has been an upsurge of interest in highly correlated electron systems, 
particularly in its prototype, the Hubbard model [l]. Related problems, like the metal- 
insulator transition [2] and the properties of slightly doped quantum antiferromagnets, 
have also received intense scrutiny. This has been motiyated by the proposals of new 
superconducting mechanisms based on the electron-electron correlation [3], in order to 
explain the high critical temperatures observed in the ceramic compounds. For this reason, 
most of the studies have focused on the Hubbard model on the square lattice, particularly 
in the strong repulsion (large-U) limit. At half filling this system h is an antiferromagnetic 
insulator for all values of U due to the perfect nesting of the non-interacting Fermi surface. 
Interesting features in the ground-state magnetic properties, like incommensurate spiral 
structures, appear only off half filling [4, 5, 61. On the other hand, on non-bipartite lattices 
as the hianguIar one, even for the half-filled case the Hubbard model has a very rich ground- 
state structure [9, lo], including a paramagnetic phase, different magnetic long-range orders, 
and a metal-insulator transition. The triangular lattice has served in the past as a playground 
for novel ideas on unconventional phases of frustrated antiferromagnets [7]. The so called 
RVB state, and the concomitant concept of 'spin liquid', have been devised as possible 
ground states produced by the inherent frustration in this geometry. These ideas have been 
recently recycled into some of the above mentioned proposals to explain the physics of the 
Cu-0 planes [SI. 

All the physics described above originates in the combined effects of strong correlation 
and frustration. These effects appear naturally tied together in the Hubbard model on the 
triangular lattice 

' 

where i indicates lattice sites, and 6 represent the vectors pointing to the six nearest 
neighbours of a given site. This model has been previously studied in [9, 101 using 
the Hartree-Fock approximation. In this work we reexamine its ground-state properties by 
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means of the rotational-invariant slave-boson approach as developed in [ll]. Consequently, 
we write the spinor ci (cit,ci~) as ci = Zi f i .  Here Zi is a 2 x 2 boson matrix 
that describes the background (site-occupation) changes when fermions move, and the 
pseudofermion spinor fi (fit, fir)  takes care of the Fermi statistics in the hopping 
processes (see [l 11 for the definition of Zi and other details). Under rotations these operators 
will transform as fi + @ f i  and Zi + @Zi@t respectively, where @ is a SU(2) matrix. 
Now, to describe spiral magnetic shuctures with wavevector Q it is convenient to transform 
to a local reference frame with its z axis pointing in the direction of the local magnetization. 
In this twisted frame the entries of the boson matrices Zi can be replaced by site-independent 
numbers as usual. Then, for spirals around the y axis the Hamiltonian (1) is changed to 

where N is the number of lattice sites. The matrix 

where q, "J- are defined below, and B = (A?) + p)zo + A" . r. Here so is the 2 x 2 
identity matrix and 5 the vector of Pauli matrices. The four A@)s are Lagrange multipliers 
that impose the equivalence in computing the mean particle and (vector) spin densities using 
either Z or fi. In the twisted refrence frame there is no transversal spin components, so 
that we can take A\') = 0 = e), and Z becomes diagonal: Zoo, = u,S,,r. The diagonal 
elements are given by 

where e', p ; .  pi .  and d2  are, respectively, the site probabilities of having a hole, a single 
electron (polanzed parallel or antiparallel to the local z axis), and double occu ancy. The 

The Lagrange multiplier A(') takes care that the mean occupation probabilities add up to 
one, which ensures, on average, the physical size for the bosonic sector of state space. 

The diagonalization in momentum space of the effective fermion Hamiltonian (2)  gives 
the dispersion relations 

constant HO = Ud2 - A(l)(e2 + p;  + p i  + d2 - 1) +A, (2) (pt 2 + p i  + 2d2) + A,"(p$ - p i ) .  

( A k r  t + A r ,  J-) + Ak. t - & ,  J- + B; = *), 
2 -  

We defined 

Ak.0 = tCi:yL + A t )  U%@) Bk = tyiuTuj 

where 

The minimization of the ground-state energy with respect to A:), A?), A('), e ,  p,, and d 
produces seven consistency equations that are solved numerically. We used an iterative 
method which requires, at every step, adjusting the chemical potential p to fix the particle 
density n = 1, and determining the corresponding Fermi surface. These calculations are 
performed for different values of Q, in order to find the proper ground-state magnetic 
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structure as a function of U. To allow a precise determination of the Fermi surface, in 
the paramagnetic and spiral phases we solved the problem using a 800 x 800 grid to cover 
the Brillouin zone. In the gapped antiferromagnetic phase we used the Gauss-Legendre 
integration method with 120 x 120 points. We checked that these approximations produce 
no detectable error in the curves shown. 

Before presenting the results obtained by using the slaveboson approach, we will 
briefly discuss the picture that emerges from the Hamee-Fock approximation [9].  (We have 
reobtained these results without using the ‘spinon’ and ‘holon’ picture of Krishnamurthy 
et al.) At T = 0, for small values of U / t  the system is a paramagnetic metal. At 
Up,sP N 3.98t there is a transition into an incommensurate spiral semimetallic state. If 
only spiral magnetic states are considered, at a higher value US,,+AF 2: 5.27t there is a 
first-order transition from the spiral metal into an insulator. The insulating state has the 
three-sublattice order of the classical triangular antiferromagnet, with magnetic wavevector 
Qo = (4n/3a, 0). In the region between Up+sP and US,,+AF the wavevector Q changes 
continuously with U ,  from Q1 N 0.58Qo at Up-+sP to Q2 N O.88Qo at USp+AF. 

Exactly at this point there is a sudden jump to QO = (4n/3a, 0), corresponding to the 
commensurate-spiral three-sublattice antiferromagnet. 

In figure 1 we show the ground-state energy per sire as a function of U. For the sake of 
comparison we present both the slave-boson and Hartree-Fock results. As expected, there is 
no much difference between the predictions for the magnetic phases, while the energy of the 
paramagnetic metal is considerably lower in the slave-boson approach. In fact, the energy 
gain in this region washes up the possibility of having incommensurate spiral states as in 
the Hamee-Fock phase diagram. According to the slave-boson approach the system goes 
from the paramagnetic phase directly into the antiferromagnetic insulator via a first-order 
transition at Up-,AF N 7.23t (figure l(a)). 

Incommensurate magnetic structures appear only as metastable states according to 
this approximation (figure I(b)). If the paramagnetic phase is continued into the 
antiferromagnetic stability region, like in the square-lattice case there is a Mott transition at 

In a further work [IO] Jayaprakash er al have considered the possibility that a linear 
spin density wave (SDW) could compete in energy with spiral states. They found that a 
commensurate linear SDW with ordering at wavevector Q = (n /a ,  0) intervenes between 
the spiral and the antiferromagnetic states. At Usp+~ 2: 4.45t the spiral SOW with 
Q = 0.66Q0 becomes unstable and the system goes, via a first-order transition, into a 
semiconducting state with the magnetization polarized ‘linearly. This state is the ground 
state for Usv, c U c U ~ A F  N 6.2t. At this point there is a new first-order transition 
to the three-sublattice antiferromagnetic phase. The linear SDW state becomes favourable 
against the spiral structures ,because of the zigzagging ferromagnetic pathways that this 
order presents (figure 2). These pathways contribute to 1ower.the kinetic energy, which, 
for the mentioned range of U, overcomes the loose in magnetic energy with respect to the 
spiral order. It seems plausible that this mechanism could stabilize the linear SDW phase in 
the slave-boson approach too. We have looked for solutions to the consistency equations 
corresponding to site occupations having the symmetry shown in figure 2. These calculations 
are more demanding since now one has to diagonalize a 4 x4 matrix at every k point. In this 
case we used a 200x200 grid to cover the Brillouin zone of the decorated rectangular lattice. 
We found that for a small range Up-,, N 6.9t c U < U,-,@ N 7.8t the linear SDW becomes 
the ground-state (figure 3). Notice that this state has lower energy than the paramagnetic 
solution because of its magnetic structure, and better energy than the antiferromagnetic order 
because of its kinetic energy. As~shown in the inset to figure 3, the linear SDW somehow 

= 81c01 = 15.813, where €0 is the triangular-lattice tight-binding energy. 
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Figure 1. Ground-state energy E as a function of the on-site repulsion U. Full lines are slave- 
boson resulk; dashed lines correspond to the Hartree-Foek predictions. (a) P paramagnetic 
solution; Al? antifermmagnetic solution with magnetic wavevector Qo = (471/3a, 0). @) Sp: 
incommensurate spiral solutions with magnetic wavevectors PQo, for p = 0.60 and 0.75. The 
dotted line gives the points at which a gap opens up in the spiral solutions. 

interpolates between these two phases. Furthermore, in agreement with the Hmee-Fock 
prediction, [lo] this state is semiconducting in its stability region. In conclusion, we have 
applied the rotational-invariant slaveboson approach to the study of the half-filled triangular- 
lattice Hubbard model. For increasing values of U the ground state presents a metallic 
paramagnetic phase, a semimetallic commensurate linear SDW phase, and the classical three- 
sublattice antiferromagnetic phase. Furthermore, unlike the Hartree-Fwk approximation, 
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Figure 2. The magnetization paltem in the commensurate 
linear spin-density-wave state. The dashed line shows the 
four-site unit cell. Notice the zigzagging fmmagnetic 
pathways. 
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Figure 3. P paramagnetic solution; AF: 
antiferromagnetic solution; L linear spin-density-wave state. The dashed line is the Hamee- 
Fock antiferromagnetic solution. Inset: kinetic (K) and Coulomb (Cb) energies in the various 
pbeS.  

Ground-state energy E as a function of U. 

the slaveboson technique predicts that metallic incommensurate spiral structures never 
become stable. The prediction of spiral phases by the Hartree-Fock approximation seems 
to be due only to its poor Wtment of the paramagnetic metal. Conversely, it could be 
argued that the slave-boson approach probably lowers too much the energy of this phase, 
specially because of the &hoc denominators required to recover the U = 0 limit, [U] Other 
more reliable approximations are required to settle this question. Finally, we mention that 
the absence of particlehole symmetry makes interesting to extend this study off half filling. 
The non-bipartite nature of the lattice would then show up as differences in the doping with 
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particles or holes. This study is however very time-consuming from a computational point 
of view, so it is deferred to a future publication. 

One of the authors (HAC) is grateful to Fundaci6n Antorchas for partial financial support. 
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